Powered exoskeletons are wearable mechanical devices that are powered by a system of electric motors, levers, pneumatics, hydraulics, or a combination of technologies that enables limb to move with increased strength and endurance. These devices made of rigid or soft materials are worn by people whose construction mirrors the structure of their limbs, joints, and muscles and works in tandem with them.
In the past, exoskeletons were designed by defense departments for military applications. After that, these devices were commercially produced for medical rehabilitation (often for wounded veterans), or as mobility aids allowing paraplegics to stand upright, walk and climb stairs.
The new generation of commercial exoskeletons have been helped by more efficient battery solutions, while others resorted to non-traditional power solutions such as compressed air. Examples of commercial class powered exoskeletons are: Innophys’ Muscle Suit, Activelink’s Powerloader Ninja, Cyberdyne’s HAL for Labor Support RB3D’s HERCULE, Esko Bionics’ Esko Vest, Sarcos Robotics’ Guardian XO and Noonee’s Chairless Chair.
As opposed to powered exoskeletons, unpowered exoskeletons employ a combination of human guided flexion/extension and locking mechanisms to increase strength and stability. Unpowered exoskeletons for commercial and industrial use includes suitX’s MAX Exoskeleton Suite, Ekso Bionics’ Work Vest, StrongArm Technologies’ FLx ErgoSkeleton, Laevo’s Laevo and Lockheed Martin’s Fortis.
Every Wednesday is Wearable Wednesday here at Adafruit! We’re bringing you the blinkiest, most fashionable, innovative, and useful wearables from around the web and in our own original projects featuring our wearable Arduino-compatible platform, FLORA. Be sure to post up your wearables projects in the forums or send us a link and you might be featured here on Wearable Wednesday!
No comments:
Post a Comment