Via ZME Science – Yale University researchers may have overcome some of quantum computers unpredictability – in effect being able to save Schrödinger’s famous cat.
So, the radioactive atom and kitty are intimately “entangled” with each other. But once an observer opens the box, the “superposition” of the cat—the idea that it was in both states—would collapse into either the knowledge that “the cat is alive” or “the cat is dead,” but not both. This abrupt change in the atom’s quantum state is supposedly random and called a “quantum jump.” The notion of a quantum jump was first described by Danish physicist Niels Bohr but it wasn’t until the 1980s that it was observed in atoms for the first time.
“These jumps occur every time we measure a qubit,” said Michel Devoret, Professor of Applied Physics and Physics at Yale and member of the Yale Quantum Institute. “Quantum jumps are known to be unpredictable in the long run.” Devoret and colleagues wanted to see whether it was possible to get an advanced warning signal that a jump was about to occur.
The experiment’s findings contradict Bohr showing that quantum jumps are neither abrupt nor as random as previously believed. Instead, a quantum jump always occurs in the same, predictable manner from its random starting point. This deterministic nature means that it can also be reversed with another pulse of microwave radiation, sending the qubit back into a ground state. In other words, saving Schrödinger’s cat.
No comments:
Post a Comment